Lattice-Hopping: A Novel Map-Representation-Based Path Planning Algorithm for a High-Density Storage System
Optimal path planning algorithms offer substantial benefits in high-density storage (HDS) systems in modern smart manufacturing. However, traditional algorithms may encounter significant optimization challenges due to intricate architectural configurations and traffic constraints of the HDS system....
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/15/12/6764 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Optimal path planning algorithms offer substantial benefits in high-density storage (HDS) systems in modern smart manufacturing. However, traditional algorithms may encounter significant optimization challenges due to intricate architectural configurations and traffic constraints of the HDS system. This paper addresses these issues by introducing a two-step novel path planning method: (1) the mesh-tree grid map topological representation and the (2) Lattice-Hopping (LH) algorithm. The proposed method first converts the layout of an HDS system into a mesh-tree grid hierarchical structure by capturing and simplifying the spatial and geometrical information as well as the traffic constraints of the HDS system. Then, the LH algorithm is proposed to find optimal shipping path by leveraging the global connectivity of main tracks (main track priority) and the ‘jumping’ mechanism of sub-tracks. The main track priority and the ‘jumping’ mechanism work together to save computational complexity and enhance the feasibility and optimality of the proposed method. Numerical and case studies are performed to demonstrate the superiorities of our method to properly modified benchmark algorithms. Algorithm scalability, robustness, and operational feasibility for industrial production in modern smart manufacturing are also displayed and emphasized. |
---|---|
ISSN: | 2076-3417 |