The Effects of Burning Intensity on the Soil C-Related Properties and Mineralogy of Two Contrasting Forest Soils from Chilean National Parks

Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andiso...

Full description

Saved in:
Bibliographic Details
Main Authors: Karla Erazo, Clara Martí-Dalmau, David Badía-Villas, Silvia Quintana-Esteras, Blanca Bauluz, Carolina Merino
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Fire
Subjects:
Online Access:https://www.mdpi.com/2571-6255/8/7/277
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andisol and Inceptisol) with regard to soil organic carbon (SOC), total organic carbon (TOC), dissolved organic carbon (DOC), recalcitrant organic carbon (ROC), soil pH, electrical conductivity (EC), soil water repellency (SWR), soil aggregate stability (SAS), and mineralogy using X-ray diffraction (XRD). SOC and TOC decreased as temperatures increased, with a more pronounced decrease in Andisol (90% loss) than in Inceptisol (80% loss). DOC and SWR peaked at 300 °C but disappeared above 600 °C. Further, ROC increased at 300 °C in both soils, but behaved differently at higher temperatures, remaining stable in Inceptisol and being eliminated in Andisol. Soil pH increased at 600 and 900 °C; meanwhile, EC increased progressively in Andisol but peaked at 300 °C in Inceptisol. SAS remained high in both soils (between 85 and 95%) despite heating. The mineralogical analysis demonstrated how heating induced transformations in iron minerals into more oxidized forms (as hematite and maghemite) in the Andisol, while clay minerals and gibbsite decreased feldspar and quartz accumulation promotion in the Inceptisol. In summary, the initial properties of each soil influenced their respective responses to fire.
ISSN:2571-6255