Effects of crystalline morphologies on the mechanical properties of carbon fiber reinforcing polymerized cyclic butylene terephthalate composites
Carbon/polymerized cyclic butylene terephthalate (pCBT) composites were prepared through a modified film stacking technique. Three crystalline morphologies of carbon/pCBT composites were obtained at different crystallization temperatures. Tensile, flexural, short beam shear and impact tests were con...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Budapest University of Technology and Economics
2012-04-01
|
Series: | eXPRESS Polymer Letters |
Subjects: | |
Online Access: | http://www.expresspolymlett.com/letolt.php?file=EPL-0002969&mi=cd |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Carbon/polymerized cyclic butylene terephthalate (pCBT) composites were prepared through a modified film stacking technique. Three crystalline morphologies of carbon/pCBT composites were obtained at different crystallization temperatures. Tensile, flexural, short beam shear and impact tests were conducted. The low crystallinity carbon/pCBT samples were crystallized at 185°C with spherulitic structure which leads to form the large area spherulite/transcrystalline boundary regions. Consequently, the crack initiated and propagated along with ‘weak’ spherulite/transcrystalline boundary regions, which were resulted low mechanical properties. Carbon/pCBT sample crystallized at 210°C with high crystallinity and highly disordered spherulitic crystallites without spherulite/transcrystalline boundary lines or boundary crystals exhibits the highest mechanical properties. |
---|---|
ISSN: | 1788-618X |