Investigation of the impact of token embeddings in Transformer-based models on short-term tropical cyclone track and intensity predictions

Tropical cyclones (TCs) are destructive meteorological phenomena, necessitating accurate predictions of TC track and intensity to reduce risks to human life. This study evaluates three Transformer-based models – vanilla Transformer (Transformer), inverted Transformer (iTransformer), and temporal-var...

詳細記述

保存先:
書誌詳細
主要な著者: Yuan-Jiang Zeng, Yi-Qing Ni, Zheng-Wei Chen, Guang-Zhi Zeng, Jia-Yao Wang, Pak-Wai Chan
フォーマット: 論文
言語:英語
出版事項: Taylor & Francis Group 2025-12-01
シリーズ:Engineering Applications of Computational Fluid Mechanics
主題:
オンライン・アクセス:https://www.tandfonline.com/doi/10.1080/19942060.2025.2538180
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!