NUMERICAL PREDICTIONS AND MECHANICAL TESTING OF BRAIDED COMPOSITE STRUCTURES UTILISING DIGITAL IMAGE CORRELATION

The current paper is describing the implementation of a multiscale numerical model for prediction of stiffness and strength in braided composites. The model is validated by experimental testing of single-layer braided tubes under torsional loading utilising digital image correlation (DIC). For the n...

Full description

Saved in:
Bibliographic Details
Main Authors: Emil Pitz, Matei-Constantin Miron, Imre Kállai, Zoltán Major
Format: Article
Language:English
Published: Czech Technical University in Prague 2016-12-01
Series:Acta Polytechnica CTU Proceedings
Online Access:https://ojs.cvut.cz/ojs/index.php/APP/article/view/3963
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The current paper is describing the implementation of a multiscale numerical model for prediction of stiffness and strength in braided composites. The model is validated by experimental testing of single-layer braided tubes under torsional loading utilising digital image correlation (DIC). For the numerical model the entire braided structure is modelled at yarn detail level, taking into account the yarn behaviour as well as individual yarn-to-yarn interactions by using cohesive contact definitions. By means of Hashin’s failure criteria and cohesive contact damage, failure of the yarns and failure of the yarn-to-yarn interface is being accounted for. Thereby the material failure behaviour can be predicted. For validation of the model, torsion tests of biaxially braided single-layer composite tubes were performed. The strain distribution at the specimen surface was studied using the DIC system ARAMIS in 3D mode.
ISSN:2336-5382