Physics-constrained machine learning for reduced composition space chemical kinetics
Modeling detailed chemical kinetics is a primary challenge in combustion simulations. We present a novel framework to enforce physical constraints, specifically total mass and elemental conservation, during the reaction of ML models’ training for the reduced composition space chemical kinetics of la...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Cambridge University Press
2025-01-01
|
Series: | Data-Centric Engineering |
Subjects: | |
Online Access: | https://www.cambridge.org/core/product/identifier/S2632673625100129/type/journal_article |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|