An RMSprop-Incorporated Latent Factorization of Tensor Model for Random Missing Data Imputation in Structural Health Monitoring
In structural health monitoring (SHM), ensuring data completeness is critical for enhancing the accuracy and reliability of structural condition assessments. SHM data are prone to random missing values due to signal interference or connectivity issues, making precise data imputation essential. A lat...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Algorithms |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4893/18/6/351 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In structural health monitoring (SHM), ensuring data completeness is critical for enhancing the accuracy and reliability of structural condition assessments. SHM data are prone to random missing values due to signal interference or connectivity issues, making precise data imputation essential. A latent factorization of tensor (LFT)-based method has proven effective for such problems, with optimization typically achieved via stochastic gradient descent (SGD). However, SGD-based LFT models and other imputation methods exhibit significant sensitivity to learning rates and slow tail-end convergence. To address these limitations, this study proposes an RMSprop-incorporated latent factorization of tensor (RLFT) model, which integrates an adaptive learning rate mechanism to dynamically adjust step sizes based on gradient magnitudes. Experimental validation on a scaled bridge accelerometer dataset demonstrates that RLFT achieves faster convergence and higher imputation accuracy compared to state-of-the-art models including SGD-based LFT and the long short-term memory (LSTM) network, with improvements of at least 10% in both imputation accuracy and convergence rate, offering a more efficient and reliable solution for missing data handling in SHM. |
---|---|
ISSN: | 1999-4893 |