A Robust Tracking Method for Aerial Extended Targets with Space-Based Wideband Radar

Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large...

Full description

Saved in:
Bibliographic Details
Main Authors: Linlin Fang, Yuxin Hu, Lihua Zhong, Lijia Huang
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/17/14/2360
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Space-based radar systems offer significant advantages for air surveillance, including wide-area coverage and extended early-warning capabilities. The integrated design of detection and imaging in space-based wideband radar further enhances its accuracy. However, in the wideband tracking mode, large aircraft targets exhibit extended characteristics. Measurements from the same target cross multiple range resolution cells. Additionally, the nonlinear observation model and uncertain measurement noise characteristics under space-based long-distance observation substantially increase the tracking complexity. To address these challenges, we propose a robust aerial target tracking method for space-based wideband radar applications. First, we extend the observation model of the gamma Gaussian inverse Wishart probability hypothesis density filter to three-dimensional space by incorporating a spherical–radial cubature rule for improved nonlinear filtering. Second, variational Bayesian processing is integrated to enable the joint estimation of the target state and measurement noise parameters, and a recursive process is derived for both Gaussian and Student’s t-distributed measurement noise, enhancing the method’s robustness against noise uncertainty. Comprehensive simulations evaluating varying target extension parameters and noise conditions demonstrate that the proposed method achieves superior tracking accuracy and robustness.
ISSN:2072-4292