Online Banking Fraud Detection Model: Decentralized Machine Learning Framework to Enhance Effectiveness and Compliance with Data Privacy Regulations

In such a dynamic and increasingly digitalized financial sector, many sophisticated fraudulent and cybercrime activities continue to challenge conventional detection systems. This research study explores a decentralized anomaly detection framework using deep autoencoders, designed to meet the dual i...

Full description

Saved in:
Bibliographic Details
Main Authors: Hisham AbouGrad, Lakshmi Sankuru
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2110
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In such a dynamic and increasingly digitalized financial sector, many sophisticated fraudulent and cybercrime activities continue to challenge conventional detection systems. This research study explores a decentralized anomaly detection framework using deep autoencoders, designed to meet the dual imperatives of fraud detection effectiveness and user data privacy. Instead of relying on centralized aggregation or data sharing, the proposed model simulates distributed training across multiple financial nodes, with each institution processing data locally and independently. The framework is evaluated using two real-world datasets, the Credit Card Fraud dataset and the NeurIPS 2022 Bank Account Fraud dataset. The research methodology applied robust preprocessing, the implementation of a compact autoencoder architecture, and a threshold-based anomaly detection strategy. Evaluation metrics, such as confusion matrices, receiver operating characteristic (ROC) curves, precision–recall (PR) curves, and reconstruction error distributions, are used to assess the model’s performance. Also, a threshold sensitivity analysis has been applied to explore detection trade-offs at varying levels of strictness. Although the model’s recall remains modest due to class imbalance, it demonstrates strong precision at higher thresholds, which demonstrates its utility in minimizing false positives. Overall, this research study is a practical and privacy-conscious approach to fraud detection that aligns with the operational realities of financial institutions and regulatory compliance toward scalability, privacy preservation, and interpretable fraud detection solutions suitable for real-world financial environments.
ISSN:2227-7390