MXene-Based Gas Sensors for NH<sub>3</sub> Detection: Recent Developments and Applications

Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to...

Full description

Saved in:
Bibliographic Details
Main Authors: Yiyang Xu, Yinglin Wang, Zhaohui Lei, Chen Wang, Xiangli Meng, Pengfei Cheng
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/7/820
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ammonia, as a toxic and corrosive gas, is widely present in industrial emissions, agricultural activities, and disease biomarkers. Detecting ammonia is of vital importance to environmental safety and human health. Sensors based on MXene have become an effective means for detecting ammonia gas due to their unique hierarchical structure, adjustable surface chemical properties, and excellent electrical conductivity. This study reviews the latest progress in the use of MXene and its composites for the low-temperature detection of ammonia gas. The strategies for designing MXene composites, including heterojunction engineering, surface functionalization, and active sites, are introduced, and their roles in improving sensing performance are clarified. These methods have significantly improved the ability to detect ammonia, offering high selectivity, rapid responses, and ultra-low detection limits within the low-temperature range. Successful applications in fields such as industrial safety, food quality monitoring, medical diagnosis, and agricultural management have demonstrated the multi-functionality of this technology in complex scenarios. The challenges related to the material’s oxidation resistance, humidity interference, and cross-sensitivity are also discussed. This study aims to briefly describe the reasonable design based on MXene sensors, aiming to achieve real-time and energy-saving environmental and health monitoring networks in the future.
ISSN:2072-666X