On the Study of Solutions for a Class of Third-Order Semilinear Nonhomogeneous Delay Differential Equations

This paper mainly investigates a class of third-order semilinear delay differential equations with a nonhomogeneous term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo>(&...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenjin Li, Jiaxuan Sun, Yanni Pang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/12/1926
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper mainly investigates a class of third-order semilinear delay differential equations with a nonhomogeneous term <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mo>(</mo><msup><mrow><mo>[</mo><msup><mi>x</mi><mo>″</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>]</mo></mrow><mi>α</mi></msup><mo>)</mo></mrow><mo>′</mo></msup><mo>+</mo><mi>q</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><msup><mi>x</mi><mi>α</mi></msup><mrow><mo>(</mo><mi>σ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>+</mo><mi>f</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo><mi>t</mi><mo>≥</mo><msub><mi>t</mi><mn>0</mn></msub><mo>.</mo></mrow></semantics></math></inline-formula> Under the oscillation criteria, we propose a sufficient condition to ensure that all solutions for the equation exhibit oscillatory behavior when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> is the quotient of two positive odd integers, supported by concrete examples to verify the accuracy of these conditions. Furthermore, for the case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>,</mo></mrow></semantics></math></inline-formula> a sufficient condition is established to guarantee that the solutions either oscillate or asymptotically converge to zero. Moreover, under these criteria, we demonstrate that the global oscillatory behavior of solutions remains unaffected by time-delay functions, nonhomogeneous terms, or nonlinear perturbations when <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>=</mo><mn>1</mn><mo>.</mo></mrow></semantics></math></inline-formula> Finally, numerical simulations are provided to validate the effectiveness of the derived conclusions.
ISSN:2227-7390