Proprioceptive Control of Muscle Activation in Aging: Implications for Balance and Fall Risk
(1) Background: This study aimed to assess whether older adults exhibit greater discrepancies between intended and actual motor unit recruitment, which could affect the quality of muscle activation and potentially increase the risk of falls. (2) Methods: Forty-eight physically active older women wer...
Saved in:
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Biology |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-7737/14/6/703 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (1) Background: This study aimed to assess whether older adults exhibit greater discrepancies between intended and actual motor unit recruitment, which could affect the quality of muscle activation and potentially increase the risk of falls. (2) Methods: Forty-eight physically active older women were assessed (65 ± 6 years, 164 ± 6 cm, and 76 ± 7 kg). The bioelectrical activity (EMG) of the vastus lateralis oblique (VLO) and vastus medialis oblique (VMO) muscles were assessed during isometric testing with the knee joint bent to 75 degrees. The participants were instructed to press against a stable bar for 5 s at a specific percentage of their perceived force level (at 15%, 30%, and 60% of MVC) when the EMG activity was recorded. Balance was assessed using a stabilometric platform in a standing position. (3) Results: In all three thresholds, the bioelectrical activity of the VLO and VMO muscles significantly deviated from what was expected under the assumption of a nearly linear relationship between muscle force and bioelectrical activity. In each of the three thresholds, it did not exceed 10% MVC and significantly differed only between the 15% and 60% MVC thresholds. No significant differences were found between the dominant and non-dominant sides. A significant relationship was observed between the sway area (Area 95%) and the activity of the non-dominant limb VLO muscle. (4) Conclusions: Our results suggest that older adults experience deficits in muscle activation perception, leading to discrepancies between intended and actual muscle engagement, which may affect functional task performance and potentially increase fall risk. |
---|---|
ISSN: | 2079-7737 |