Unsupervised SAR Fine-Grained Ship Classification via Spherical Metric Refinement With Deep Subdomain Adaptation
Unsupervised domain adaptation (UDA) is a promising method for addressing the problem of SAR fine-grained ship classification in target domain with no labeled data available by leveraging a large number of labeled samples from source domains. This article proposes a novel framework, spherical metric...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/11045289/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|