Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$
We characterize the lower-semicontinuity of nonlocal one-dimensional energies of the type \[ \operatorname{ess\;sup}_{(s,t) \in I\times I} h\bigl ([u](s), [u](t)\bigr ), \] where $I$ is an open and bounded interval in the real line, $u \in \mathit{SBV_{\mathrm{0}}}(I)$ and $[u](r):=u(r^+)- u(r^-)$,...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2025-05-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.726/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|