Geometric Algebras and Fermion Quantum Field Theory

Corresponding to a finite dimensional Hilbert space $H$ with $\dim H=n$, we define a geometric algebra $\mathcal{G}(H)$ with $\dim\left[\mathcal{G}(H)\right]=2^n$. The algebra $\mathcal{G}(H)$ is a Hilbert space that contains $H$ as a subspace. We interpret the unit vectors of $H$ as states of indiv...

Full description

Saved in:
Bibliographic Details
Main Author: Stan Gudder
Format: Article
Language:English
Published: Quanta 2025-07-01
Series:Quanta
Online Access:https://dankogeorgiev.com/ojs/index.php/quanta/article/view/100
Tags: Add Tag
No Tags, Be the first to tag this record!

Similar Items