A staged deep learning approach to spatial refinement in 3D temporal atmospheric transport

High-resolution spatiotemporal simulations effectively capture the complexities of atmospheric plume dispersion in complex terrain. However, their high computational cost makes them impractical for applications requiring rapid responses or iterative processes, such as optimization, uncertainty quant...

Full description

Saved in:
Bibliographic Details
Main Authors: M. Giselle Fernández-Godino, Wai Tong Chung, Akshay A. Gowardhan, Matthias Ihme, Qingkai Kong, Donald D. Lucas, Stephen C. Myers
Format: Article
Language:English
Published: KeAi Communications Co. Ltd. 2025-06-01
Series:Artificial Intelligence in Geosciences
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2666544125000164
Tags: Add Tag
No Tags, Be the first to tag this record!