Pioneering machine learning techniques to estimate thermal conductivity of carbon-based phase change materials: A comprehensive modeling framework

This study presents a comprehensive data-driven framework to accurately estimate the thermal conductivity of nano-enhanced phase change materials (NEPCMs) using machine learning. A dataset of 482 samples, incorporating various nanoparticle types, concentrations, PCM types, and operating temperatures...

Full description

Saved in:
Bibliographic Details
Main Authors: Raouf Hassan, Alireza Baghban
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Case Studies in Thermal Engineering
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214157X25009086
Tags: Add Tag
No Tags, Be the first to tag this record!