Autonomous Navigation and Obstacle Avoidance for Orchard Spraying Robots: A Sensor-Fusion Approach with ArduPilot, ROS, and EKF

To address the challenges of low pesticide utilization, insufficient automation, and health risks in orchard plant protection, we developed an autonomous spraying vehicle using ArduPilot firmware and a robot operating system (ROS). The system tackles orchard navigation hurdles, including global navi...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinjie Zhu, Xiaoshun Zhao, Jingyan Liu, Weijun Feng, Xiaofei Fan
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Agronomy
Subjects:
Online Access:https://www.mdpi.com/2073-4395/15/6/1373
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the challenges of low pesticide utilization, insufficient automation, and health risks in orchard plant protection, we developed an autonomous spraying vehicle using ArduPilot firmware and a robot operating system (ROS). The system tackles orchard navigation hurdles, including global navigation satellite system (GNSS) signal obstruction, light detection and ranging (LIDAR) simultaneous localization and mapping (SLAM) error accumulation, and lighting-limited visual positioning. A key innovation is the integration of an extended Kalman filter (EKF) to dynamically fuse T265 visual odometry, inertial measurement unit (IMU), and GPS data, overcoming single-sensor limitations and enhancing positioning robustness in complex environments. Additionally, the study optimizes PID controller derivative parameters for tracked chassis, improving acceleration/deceleration control smoothness. The system, composed of Pixhawk 4, Raspberry Pi 4B, Silan S2L LIDAR, T265 visual odometry, and a Quectel EC200A 4G module, enables autonomous path planning, real-time obstacle avoidance, and multi-mission navigation. Indoor/outdoor tests and field experiments in Sun Village Orchard validated its autonomous cruising and obstacle avoidance capabilities under real-world orchard conditions, demonstrating feasibility for intelligent plant protection.
ISSN:2073-4395