Development of a Surface-Inset Permanent Magnet Motor for Enhanced Torque Density in Electric Mountain Bikes

Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effect...

Full description

Saved in:
Bibliographic Details
Main Authors: Jun Wei Goh, Shuangchun Xie, Huanzhi Wang, Shengdao Zhu, Kailiang Yu, Christopher H. T. Lee
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/14/3709
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack reluctance torque, limiting their torque density and performance at high speeds. While interior PMSMs (IPMSMs) can overcome this limitation via reluctance torque, they require complex rotor machining and may compromise mechanical robustness. This paper proposes a surface-inset PMSM topology as a compromise between both approaches—introducing reluctance torque while maintaining a structurally simple rotor. The proposed motor features inset magnets shaped with a tapered outer profile, allowing them to remain flush with the rotor surface. This geometric configuration eliminates the need for a retaining sleeve during high-speed operation while also enabling saliency-based torque contribution. A baseline SPMSM design is first analyzed through finite element analysis (FEA) to establish reference performance. Comparative simulations show that the proposed design achieves a 20% increase in peak torque and a 33% reduction in current density. Experimental validation confirms these findings, with the fabricated prototype achieving a torque density of 30.1 kNm/m<sup>3</sup>. The results demonstrate that reluctance-assisted torque enhancement can be achieved without compromising mechanical simplicity or manufacturability. This study provides a practical pathway for improving motor performance in eMTB systems while retaining the production advantages of surface-mounted designs. The surface-inset approach offers a scalable and cost-effective solution that bridges the gap between conventional SPMSMs and more complex IPMSMs in high-demand e-mobility applications.
ISSN:1996-1073