Epitranscriptomic Control of Drought Tolerance in Rice: The Role of RNA Methylation

Drought stress is a predominant abiotic constraint adversely affecting global rice (<i>Oryza sativa</i>) production and threatening food security. While the transcriptional and post-transcriptional regulation of drought-responsive pathways has been widely investigated, the emerging field...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoru Fan, Yong Zhang, Pengyuan Gu, Misbah Naz
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/14/13/2002
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drought stress is a predominant abiotic constraint adversely affecting global rice (<i>Oryza sativa</i>) production and threatening food security. While the transcriptional and post-transcriptional regulation of drought-responsive pathways has been widely investigated, the emerging field of epitranscriptomics, particularly RNA chemical modifications such as N6-methyladenosine (m<sup>6</sup>A), adds a new dimension to gene regulation under stress. The most prevalent internal modification in eukaryotic messenger RNA influences RNA metabolism by interacting dynamically with enzymes that add, remove, or recognize the modification. Recent studies in rice reveal that m<sup>6</sup>A deposition is not static but dynamically regulated in response to water-deficit conditions, influencing transcript stability, splicing, nuclear export, and translation efficiency of key drought-responsive genes. This review critically synthesizes current findings on the distribution and functional implications of m<sup>6</sup>A and other epitranscriptomic marks (e.g., 5-methylcytosine [m<sup>5</sup>C], <i>pseudouridine</i> [Ψ]) in modulating rice responses to drought. We discuss the regulatory circuitry involving m<sup>6</sup>A effectors such as <i>OsMTA</i>, <i>OsFIP37</i>, and <i>YTH</i> domain proteins and their integration with known drought-signaling pathways including ABA and reactive oxygen species (ROS) cascades. We also highlight emerging high-resolution technologies such as m<sup>6</sup>A-seq, direct RNA sequencing, and nanopore-based detection that facilitate epitranscriptomic profiling in rice. Finally, we propose future directions for translating epitranscriptomic knowledge into crop improvement, including <i>CRISPR</i>/<i>Cas</i>-based modulation of RNA modification machinery to enhance drought tolerance.
ISSN:2223-7747