Physically-constrained evapotranspiration models with machine learning parameterization outperform pure machine learning: Critical role of domain knowledge.
Physics-informed machine learning techniques have emerged to tackle challenges inherent in pure machine learning (ML) approaches. One such technique, the hybrid approach, has been introduced to estimate terrestrial evapotranspiration (ET), a crucial variable linking water, energy, and carbon cycles....
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2025-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0328798 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|