Vortex-Induced Vibration Analysis of FRP Composite Risers Using Multivariate Nonlinear Regression

Marine risers are essential for offshore resource extraction, yet traditional metal risers encounter limitations in deep-sea applications due to their substantial weight. Fiber-reinforced polymer (FRP) composites offer a promising alternative with advantages including low density and enhanced corros...

Full description

Saved in:
Bibliographic Details
Main Authors: Lin Zhang, Chunguang Wang, Wentao He, Keshun Ma, Run Zheng, Chiemela Victor Amaechi, Zhenyang Zhang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/7/1281
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Marine risers are essential for offshore resource extraction, yet traditional metal risers encounter limitations in deep-sea applications due to their substantial weight. Fiber-reinforced polymer (FRP) composites offer a promising alternative with advantages including low density and enhanced corrosion/fatigue resistance. However, FRP risers remain susceptible to fatigue damage from vortex-induced vibration (VIV). Therefore, this study investigated VIV behavior of FRP composite risers considering the coupled effect of tensile-flexural moduli, top tensions, slenderness ratios, and flow velocities. Through an orthogonal experimental design, eighteen cases were analyzed using multivariate nonlinear fitting. Results indicated that FRP composite risers exhibited larger vibration amplitudes than metal counterparts, with amplitudes increasing to both riser length and flow velocity. It was also found that the optimized FRP configuration demonstrated enhanced fiber strength utilization. Parameter coupling analysis revealed that the multivariate nonlinear fitting model achieved sufficient accuracy when incorporating two coupled parameters, with the most significant interaction occurring between flexural modulus and top tension.
ISSN:2077-1312