An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2

In this paper, we prove the existence of a bounded linear extension operator T:L2,p(E)→L2,p(R2) $T:{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2, where E⊂R2 $E\subset {\mathbb{R}}^{2}$ is a certain discrete set with fractal structure. Our proof makes use o...

Full description

Saved in:
Bibliographic Details
Main Authors: Carruth Jacob, Israel Arie
Format: Article
Language:English
Published: De Gruyter 2024-05-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0126
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we prove the existence of a bounded linear extension operator T:L2,p(E)→L2,p(R2) $T:{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2, where E⊂R2 $E\subset {\mathbb{R}}^{2}$ is a certain discrete set with fractal structure. Our proof makes use of a theorem of Fefferman–Klartag (“Linear extension operators for Sobolev spaces on radially symmetric binary trees,” Adv. Nonlinear Stud., vol. 23, no. 1, p. 20220075, 2023) on the existence of linear extension operators for radially symmetric binary trees.
ISSN:2169-0375