An example related to Whitney’s extension problem for L 2,p (R2) when 1 < p < 2

In this paper, we prove the existence of a bounded linear extension operator T:L2,p(E)→L2,p(R2) $T:{L}^{2,p}\left(E\right)\to {L}^{2,p}\left({\mathbb{R}}^{2}\right)$ when 1 < p < 2, where E⊂R2 $E\subset {\mathbb{R}}^{2}$ is a certain discrete set with fractal structure. Our proof makes use o...

Full description

Saved in:
Bibliographic Details
Main Authors: Carruth Jacob, Israel Arie
Format: Article
Language:English
Published: De Gruyter 2024-05-01
Series:Advanced Nonlinear Studies
Subjects:
Online Access:https://doi.org/10.1515/ans-2023-0126
Tags: Add Tag
No Tags, Be the first to tag this record!