On the transfinite density of sequences and its applications to Dirichlet series
For an increasing to $\infty$ sequence $(\lambda_n)$ of positive numbers let $\displaystyle n(t)=\sum\limits_{\lambda_n\le t}1,\ N(x)=\int\nolimits_{0}^{x}\dfrac{n(t)}{t}dt, \ L_k(t)=\sum\limits_{\lambda_n\le t}\prod\limits_{j=0}^{k-1}\dfrac{1}{\ln_j \lambda_n}$ for $k\ge 1$ and $t\ge t_k=\exp_k (0...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2025-06-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/641 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|