Dominant sets with neighborhood for trees
The subset $V' \subset V(G)$ forms a dominant set of vertices of the graph $G$ with a neighborhood $ \varepsilon$ if for any vertex $v \in V \backslash V'$ there is a vertex $u \in V'$ such that the length of the shortest chain connecting these vertices $d(v,u)\leqslant \varepsilon$;...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Yaroslavl State University
2025-03-01
|
Series: | Моделирование и анализ информационных систем |
Subjects: | |
Online Access: | https://www.mais-journal.ru/jour/article/view/1914 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|