Arbitrary random variables and Wiman's inequality for analytic functions in the unit disc

We consider the class $\mathcal{A}(\varphi,\beta)$ of random analytic functions in the unit disk $\mathbb{C}=\{z\colon |z|<1\}$ of the form $f(z,\omega)=f(z,\omega_1,\omega_2)=\sum_{n=0}^{+\infty} R_n(\omega_1)\xi_n(\omega_2)a_nz^n,$ where $a_n\in\mathbb{C}\colon \lim\limits_{n\to+\infty}\sq...

Full description

Saved in:
Bibliographic Details
Main Authors: A. O. Kuryliak, M. R. Kuryliak, O. M. Trusevych
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2024-09-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/553
Tags: Add Tag
No Tags, Be the first to tag this record!