Self-supervised deep learning for detection of forest disturbance types in a subtropical ecosystem using transformer and Sentinel-1 and Sentinel-2 time series data
Accurate and timely detection of forest disturbance types is crucial for evaluating ecosystem health and global climate stability. Time series remote-sensing data offers valuable spatiotemporal information. However, frequent cloud cover in subtropical regions disrupts the temporal consistency of opt...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Taylor & Francis Group
2025-12-01
|
Series: | International Journal of Digital Earth |
Subjects: | |
Online Access: | https://www.tandfonline.com/doi/10.1080/17538947.2025.2537325 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|