Optimizing standardized lab-grown skin substitutes evidences a proliferation-differentiation switch based on ascorbic acid
Summary: Developing standardized bioengineered constructs that accurately replicate human skin is a largely sought-after goal. Pathways initiated at the nurturing interface with the dermal compartment have the potential to modulate the developing epidermal architecture. Here, we identified ascorbic...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-08-01
|
Series: | iScience |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225013276 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary: Developing standardized bioengineered constructs that accurately replicate human skin is a largely sought-after goal. Pathways initiated at the nurturing interface with the dermal compartment have the potential to modulate the developing epidermal architecture. Here, we identified ascorbic acid, a dermis-donated metabolite, as key in modulating the phenotypical identity of immortalized keratinocytes. Priming monolayers with 2 μg/mL of the culture-stable derivative L-ascorbic acid 2-phosphate (A2P) led to the emergence of a basal-like phenotype within the cells, which showed increased clonogenicity, nuclear/cytoplasmic ratio, and upregulation of progenitor markers. Instead, surpassing this dose induced intracellular ascorbic acid accumulation and promoted a motile status. In organotypic cultures, pre-incubation of founding keratinocytes with 2 μg/mL of A2P improved epithelial layering, whereas higher pretreatments resulted in poor stratification. These findings suggest that ascorbic acid levels in the self-renewing epithelium have a fundamental role in determining whether cells initially commit to differentiation, ultimately influencing regenerative outcomes. |
---|---|
ISSN: | 2589-0042 |