Quantitative and Qualitative Characterization of Food Waste for Circular Economy Strategies in the Restaurant Sector of Riobamba, Ecuador: A Case Study Approach

The aim of this study is the quantitative and qualitative characterization of food waste from the restaurant sector in Riobamba, Ecuador as part of circular economy efforts. A weekly analysis of waste generation data collected from 13 participating restaurants showed that the average daily food wast...

Full description

Saved in:
Bibliographic Details
Main Authors: Angélica Saeteros-Hernández, Francisco Chalen-Moreano, Ronald Zurita-Gallegos, Pedro Badillo-Arévalo, Mayra Granizo-Villacres, Carlos Cevallos-Hermida, Diego Viteri-Nuñez
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Biomass
Subjects:
Online Access:https://www.mdpi.com/2673-8783/5/2/18
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study is the quantitative and qualitative characterization of food waste from the restaurant sector in Riobamba, Ecuador as part of circular economy efforts. A weekly analysis of waste generation data collected from 13 participating restaurants showed that the average daily food waste generated was 18.48 kg/restaurant/day. The highest percentage (55%) was produced by organic waste, which was primarily composed of waste from vegetables. Plastics represented most of the recyclable waste (21%), and 24% of the waste was disposable. With a low dry matter content of 24.33 ± 5.12% and an average moisture level of 75.68 ± 5.12%, the high organic content indicates its potential for value-adding through biological recycling processes like anaerobic digestion and composting. Fruit and vegetable waste had high moisture levels (80.3 ± 2.54% and 81.2 ± 2.75%, respectively), which made them perfect for composting and biogas production. However, the moisture and dry matter contents differed greatly amongst the waste categories. The increased dry matter concentration of animal protein waste (54.5 ± 4.30%) indicated that it may be converted into products with added value, such as animal meal and oils. Plant protein waste needs to be processed quickly to avoid spoiling because of its extraordinarily high moisture content (95.7 ± 3.20%) and low dry matter (4.3 ± 3.20%). The findings underscore the necessity for focused measures, such as composting, anaerobic digestion, and enhanced recycling, to optimize resource recovery and mitigate environmental consequences.
ISSN:2673-8783