About Borel type relation for some positive functional series
Let $f$ be an entire transcendental function, $(\lambda_n)$ be a non-decreasing to $+\infty$ sequence, $M_f(r)=\max\{|f(z)|\colon |z|=r\}$, and $\Gamma_f(r)/r=(\ln M_f(r))'_+$ be a right derivative, $r>0$. For a regularly convergent in ${\mathbb C}$ series of the form $F(z)=\sum_{n=1}^{\inft...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2025-03-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/614 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|