Machine learning-guided construction of an analytic kinetic energy functional for orbital free density functional theory
Machine learning (ML) of kinetic energy functionals (KEF) for orbital-free density functional theory (DFT) holds the promise of addressing an important bottleneck in large-scale ab initio materials modeling where sufficiently accurate analytic KEFs are lacking. However, ML models are not as easily h...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2025-01-01
|
Series: | Machine Learning: Science and Technology |
Subjects: | |
Online Access: | https://doi.org/10.1088/2632-2153/ade7ca |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|