Loading…

A first course in real analysis /

Summary: "This book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are...

Full description

Saved in:
Bibliographic Details
Main Author: Berberian, Sterling K., 1926-
Format: Book
Language:English
Series:Undergraduate texts in mathematics
Subjects:
Online Access:Publisher description
Table of contents only
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000cam a22000007i 4500
001 ml2023163246
003 PUMLC
005 20240602104128.0
006 a||||fr|||| 00| 0
007 ta
008 931126s1994 nyua b 001 0 eng
952 |0 0  |1 0  |2 ddc  |4 0  |6 SR_515_800000000000000_B484  |7 0  |8 SR  |9 112704  |a ML015  |b ML015  |c SR  |d 2023-05-23  |e 2  |g 233.83  |l 0  |o SR 515.8 B484  |p 163246  |r 2023-05-23 00:00:00  |v 233.83  |w 2023-05-23  |y 2HRSR  |z Recommended text for MC 
999 |c 86562  |d 86562 
010 |a  93046020  
020 |a 9781461264330  |q (paperback) 
020 |a 0387942173  |q  (New York : acidfree paper) 
020 |a 3540942173   |q (Berlin : acidfree paper) 
035 |a (DLC)3944420 
040 |a DLC  |b eng  |e rda  |c DLC  |d DLC  |d PUMLC 
043 |a nyu 
050 0 0 |a QA300  |b .B457 1994 
082 0 0 |a 515.8  |2 20 
100 1 |a Berberian, Sterling K.,  |d 1926-  |9 13279 
245 1 2 |a A first course in real analysis /  |c Sterling K. Berberian. 
264 |a New York :  |b Springer-Verlag,  |c c1994. 
300 |a xi, 237 pages :  |b illustrations ;  |c 25 cm. 
336 |2 rdacontent  |a text  |b txt 
337 |2 rdamedia  |a unmediated  |b n 
338 |2 rdacarrier  |a volume  |b nc 
440 0 |a Undergraduate texts in mathematics  |9 13266 
501 |a "With 19 illustrations" 
504 |a Includes bibliographical references and indexes. 
505 |a Content: Ch. 1. Axioms for the Field R of Real Numbers Ch. 2. First Properties of R Ch. 3. Sequences of Real Numbers, Convergence Ch. 4. Special Subsets of R Ch. 5. Continuity Ch. 6. Continuous Functions on an Interval Ch. 7. Limits of Functions Ch. 8. Derivatives Ch. 9. Riemann Integral Ch. 10. Infinite Series Ch. 11. Beyond the Riemann Integral. 
520 |a Summary: "This book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun­ dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done". - Author 
650 0 |a Mathematical analysis.  |9 455 
650 0 |a Numbers, Real.  |9 13280 
856 4 2 |3 Publisher description  |u http://www.loc.gov/catdir/enhancements/fy0815/93046020-d.html 
856 4 1 |3 Table of contents only  |u http://www.loc.gov/catdir/enhancements/fy0815/93046020-t.html 
906 |a 7  |b cbc  |c orignew  |d 1  |e ocip  |f 19  |g y-gencatlg 
942 |2 ddc  |c 2HRSR  |k SR  |m B484  |n 0