Spectra Narrowing of a 976 nm High Power External-Cavity Semiconductor Laser Based on a Transmission Grating
Broad-area 976 nm semiconductor lasers have garnered widespread attention for their applications in generating high-power 488 nm blue laser light and as pump sources for solid-state and ytterbium-doped fiber lasers. Nevertheless, these lasers exhibit a wide gain bandwidth, short cavity length, and u...
Saved in:
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2025-01-01
|
Series: | IEEE Photonics Journal |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10814083/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Broad-area 976 nm semiconductor lasers have garnered widespread attention for their applications in generating high-power 488 nm blue laser light and as pump sources for solid-state and ytterbium-doped fiber lasers. Nevertheless, these lasers exhibit a wide gain bandwidth, short cavity length, and usually use the natural cleavage surface as the output window, resulting in a broad emitting spectrum in free-running state. We investigated a high-power narrow-linewidth 976 nm edge emitting broad area semiconductor laser (EEL) through external cavity feedback technology by employing a transmission grating as the dispersive element. This configuration achieved a high output power of 11 W and a spectral linewidth of 0.36 nm at 976 nm, corresponding to an intracavity power of 15.7 W. It provided a more flexible cavity structure for direct frequency doubling of the semiconductor laser to generate a high power of 488 nm blue laser. |
---|---|
ISSN: | 1943-0655 |