Refining Rainfall Derived from Satellite Radar for Estimating Inflows at Lam Pao Dam, Thailand
This project aimed to evaluate the use of meteorological satellite-derived rainfall data to estimate water inflows to dams. In this study, the Lam Pao Dam in the Chi Basin, Thailand, was used as a case study. Rainfall data were obtained using the PERSIANN technique. To improve accuracy, satellite-de...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Hydrology |
Subjects: | |
Online Access: | https://www.mdpi.com/2306-5338/12/7/163 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This project aimed to evaluate the use of meteorological satellite-derived rainfall data to estimate water inflows to dams. In this study, the Lam Pao Dam in the Chi Basin, Thailand, was used as a case study. Rainfall data were obtained using the PERSIANN technique. To improve accuracy, satellite-derived rainfall estimates were adjusted using ground-based rainfall measurements from stations located near and within the catchment area, applying the 1-DVAR method. The Kriging method was employed to estimate the spatial distribution of rainfall over the catchment area. This approach resulted in a Probability of Detection (POD) of 0.92 and a Threat Score (TS) of 0.72 for rainfall estimates in the Chi Basin. Rainfall data from the Weather Research and Forecasting (WRF) numerical models were used as inputs for the HEC-HMS model to simulate water inflows into the dam. To refine rainfall estimates, various microphysics schemes were tested, including WSM3, WSM5, WSM6, Thompson, and Thompson Aerosol-Aware. Among these, the Thomson Aerosol-Aware scheme demonstrated the highest accuracy, achieving an average POD of 0.96, indicating highly reliable rainfall predictions for the Lam Pao Dam catchment. The findings underscore the potential benefits of using satellite-derived meteorological data for rainfall estimation, particularly where installing and maintaining ground-based measurement stations is difficult, e.g., forests/mountainous areas. This research contributes to a better understanding of satellite-derived rainfall patterns and their influence on catchment hydrology for enhanced water resource analysis. |
---|---|
ISSN: | 2306-5338 |