Curcumin as Therapeutic Modulator of Impaired Antioxidant Defense System: Implications for Oxidative Stress-Associated Reproductive Dysfunction
One of the critical challenges in assisted reproductive technology (ART) is the inadequacy of effective regulation of reactive oxygen species. Simultaneously, the endogenous antioxidant defense system plays a significant role in combating oxidative stress across various physiological stages of embry...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Biology |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-7737/14/7/750 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One of the critical challenges in assisted reproductive technology (ART) is the inadequacy of effective regulation of reactive oxygen species. Simultaneously, the endogenous antioxidant defense system plays a significant role in combating oxidative stress across various physiological stages of embryonic development. However, these intrinsic defense systems alone are insufficient as they rely on exogenous antioxidants that interact synergistically to enhance and sustain antioxidant capacity. Considering the principal role of antioxidants in mitigating oxidative stress in oocyte growth, identifying reliable and non-toxic antioxidants is an essential prerequisite for effective therapeutic applications. Thus, owing to the need to explore exogenous antioxidants, we attempted to summarize and analyze the literature data defining the potential use of curcumin in mitigating oxidative stress to promote oocyte maturation through <i>in vivo</i> and <i>in vitro</i> model studies. Recent studies demonstrated the protective role of curcumin against oxidative stress and the inflammatory response, primarily through the upregulation of key antioxidant enzymes (including SOD, CAT and GPx), a reduction in oxidative stress markers (e.g., ROS, MDA) and by suppressing the pro-inflammatory signaling pathways (such as NF-kB, JAK/STAT) while activating the NRF2/HO-1 pathway to further enhance the cellular antioxidant defense. Advancing curcumin as a therapeutic agent necessitates a thorough understanding of curcumin’s molecular mechanisms and targeted pharmacological effectiveness to treat female infertility, and despite the progress in enhancing curcumin’s bioavailability, the optimal dosing strategies still need to be defined. Future studies are required to develop strategies to augment antioxidant defense mechanisms (modeling <i>in vivo</i> and <i>in vitro</i> studies) using curcumin with a specific emphasis on curcumin’s role in improving mitochondrial activity. This approach is expected to represent a significant advancement in the field of medicine, offering novel therapeutic possibilities. |
---|---|
ISSN: | 2079-7737 |