Rolling Bearing Fault Diagnosis via Temporal-Graph Convolutional Fusion

To address the challenge of incomplete fault feature extraction in rolling bearing fault diagnosis under small-sample conditions, this paper proposes a Temporal-Graph Convolutional Fusion Network (T-GCFN). The method enhances diagnostic robustness through collaborative extraction and dynamic fusion...

Full description

Saved in:
Bibliographic Details
Main Authors: Fan Li, Yunfeng Li, Dongfeng Wang
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/13/3894
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the challenge of incomplete fault feature extraction in rolling bearing fault diagnosis under small-sample conditions, this paper proposes a Temporal-Graph Convolutional Fusion Network (T-GCFN). The method enhances diagnostic robustness through collaborative extraction and dynamic fusion of features from time-domain and frequency-domain branches. First, Variational Mode Decomposition (VMD) was employed to extract time-domain Intrinsic Mode Functions (IMFs). These were then input into a Temporal Convolutional Network (TCN) to capture multi-scale temporal dependencies. Simultaneously, frequency-domain features obtained via Fast Fourier Transform (FFT) were used to construct a K-Nearest Neighbors (KNN) graph, which was processed by a Graph Convolutional Network (GCN) to identify spatial correlations. Subsequently, a channel attention fusion layer was designed. This layer utilized global max pooling and average pooling to compress spatio-temporal features. A shared Multi-Layer Perceptron (MLP) then established inter-channel dependencies to generate attention weights, enhancing critical features for more complete fault information extraction. Finally, a SoftMax classifier performed end-to-end fault recognition. Experiments demonstrated that the proposed method significantly improved fault recognition accuracy under small-sample scenarios. These results validate the strong adaptability of the T-GCFN mechanism.
ISSN:1424-8220