On the Performance of Non-Lambertian Relay-Assisted 6G Visible Light Communication Applications

Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the h...

Full description

Saved in:
Bibliographic Details
Main Authors: Jupeng Ding, Chih-Lin I, Jintao Wang, Hui Yang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/12/6/541
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Visible light communication (VLC) has become one important candidate technology for beyond 5G and even 6G wireless networks, mainly thanks to its abundant unregulated light spectrum resource and the ubiquitous deployment of light-emitting diodes (LED)-based illumination infrastructures. Due to the high directivity of VLC channel propagation, relay-based cooperative techniques have been introduced and explored to enhance the transmission performance of VLC links. Nevertheless, almost all current works are limited to scenarios adopting well-known Lambertian transmitter and relay, which fail to characterize the scenarios with distinctive non-Lambertian transmitter or relay. For filling this gap, in this article, relay-assisted VLC employing diverse non-Lambertian optical beam configurations is proposed. Unlike the conventional Lambertian transmitter and relay-based research paradigm, the presented scheme employs the commercially available non-Lambertian transmitter and relay to configure the cooperative VLC links. Numerical results illustrate that up to 40.63 dB SNR could be provided by the proposed non-Lambertian relay-assisted VLC scheme, compared with about a 34.22 dB signal-to-noise ratio (SNR) of the benchmark Lambertian configuration.
ISSN:2304-6732