Cellular and Matrix Organisation of the Human Aortic Valve Interleaflet Triangles
(1) Background: The sophisticated function of the aortic root relies on the coordinated movement of its constituent components. This study examines the extracellular components of the interleaflet triangles (ILTs) and characterises the cells that are present within this region of the aortic root. (2...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Biology |
Subjects: | |
Online Access: | https://www.mdpi.com/2079-7737/14/7/863 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | (1) Background: The sophisticated function of the aortic root relies on the coordinated movement of its constituent components. This study examines the extracellular components of the interleaflet triangles (ILTs) and characterises the cells that are present within this region of the aortic root. (2) Methods: A total of 10 human aortic valves and 6 porcine aortic valves were processed for immunohistochemical staining, scanning, and transmission electron microscopy. (3) Results: The three ILTs differed in size and macroscopic appearance. Each triangle comprised up to five distinct layers of tissue: an innermost endothelial layer, an inner elastin-rich layer, a thicker outer layer comprising densely packed layers of collagen and glycosaminoglycans, and an outer layer of intermingled myocardial and adipose tissue. A band of cells near the luminal surfaces of all ILTs expressed smooth muscle cell α-actin with variable expression of smooth muscle myosin heavy chain. In all the ILTs, there was evidence of neurofilament staining, indicating the presence of nerve fibres. (4) Conclusions: Each ILT is unique in its structure and organisation, with differing amounts of elastin and collagen, as well as myocardial, adipose, and fibrous content. The ILTs contain multiple cell types in varying abundance. Functional studies are required to determine the role of the different cells and their organisation in contributing to the sophisticated, dynamic behaviour of the aortic root. |
---|---|
ISSN: | 2079-7737 |