A Lightweight Multi-Frequency Feature Fusion Network with Efficient Attention for Breast Tumor Classification in Pathology Images
The intricate and complex tumor cell morphology in breast pathology images is a key factor for tumor classification. This paper proposes a lightweight breast tumor classification model with multi-frequency feature fusion (LMFM) to tackle the problem of inadequate feature extraction and poor classifi...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Information |
Subjects: | |
Online Access: | https://www.mdpi.com/2078-2489/16/7/579 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The intricate and complex tumor cell morphology in breast pathology images is a key factor for tumor classification. This paper proposes a lightweight breast tumor classification model with multi-frequency feature fusion (LMFM) to tackle the problem of inadequate feature extraction and poor classification performance. The LMFM utilizes wavelet transform (WT) for multi-frequency feature fusion, integrating high-frequency (HF) tumor details with high-level semantic features to enhance feature representation. The network’s ability to extract irregular tumor characteristics is further reinforced by dynamic adaptive deformable convolution (DADC). The introduction of the token-based Region Focus Module (TRFM) reduces interference from irrelevant background information. At the same time, the incorporation of a linear attention (LA) mechanism lowers the model’s computational complexity and further enhances its global feature extraction capability. The experimental results demonstrate that the proposed model achieves classification accuracies of 98.23% and 97.81% on the BreaKHis and BACH datasets, with only 9.66 M parameters. |
---|---|
ISSN: | 2078-2489 |