A Computational Intelligence-Based Proposal for Cybersecurity and Health Management with Continuous Learning in Chemical Processes
Ensuring cybersecurity and health management is a fundamental requirement in modern chemical industry plants operating under the Industry 4.0 framework. Traditionally, these two concerns have been addressed independently, despite sharing multiple underlying elements which suggest the viability of a...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Actuators |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-0825/14/7/329 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ensuring cybersecurity and health management is a fundamental requirement in modern chemical industry plants operating under the Industry 4.0 framework. Traditionally, these two concerns have been addressed independently, despite sharing multiple underlying elements which suggest the viability of a unified detection and localization solution. This study introduces a computational intelligence framework based on fuzzy techniques, which allows for the early identification and precise localization of both faults and cyberattacks, along with the capability to recognize previously unseen events during runtime. Once new events are identified and classified, the training database is updated, creating a mechanism for continuous learning. This integrated approach simplifies the computational complexity of supervisory systems and enhances collaboration between the Operational Technology and Information Technology teams within chemical plants. The proposed methodology demonstrates strong robustness and reliability, even in complex conditions characterized by noisy measurements and disturbances, achieving outstanding performance due to its excellent discrimination capabilities. |
---|---|
ISSN: | 2076-0825 |