A Bi-Level Demand Response Framework Based on Customer Directrix Load for Power Systems with High Renewable Integration
The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This...
Sábháilte in:
| Príomhchruthaitheoirí: | , , , |
|---|---|
| Formáid: | Alt |
| Teanga: | Béarla |
| Foilsithe / Cruthaithe: |
MDPI AG
2025-07-01
|
| Sraith: | Energies |
| Ábhair: | |
| Rochtain ar líne: | https://www.mdpi.com/1996-1073/18/14/3652 |
| Clibeanna: |
Cuir clib leis
Níl clibeanna ann, Bí ar an gcéad duine le clib a chur leis an taifead seo!
|
| Achoimre: | The growing integration of renewable energy sources (RESs) into modern power systems calls for enhanced flexibility and control mechanisms. Conventional demand response (DR) strategies, such as price-based and incentive-driven methods, often encounter challenges that limit their effectiveness. This paper proposes a novel DR approach grounded in Customer Directrix Load (CDL) and formulated through Stackelberg game theory. A bilevel optimization framework is established, with air conditioning (AC) systems and electric vehicles (EVs) serving as the main DR participants. The problem is addressed using a genetic algorithm. Simulation studies on a modified IEEE 33-bus distribution system reveal that the proposed strategy significantly improves RES accommodation, reduces power curtailment, and yields mutual benefits for both system operators and end users. The findings highlight the potential of the CDL-based DR mechanism in enhancing operational efficiency and encouraging proactive consumer involvement. |
|---|---|
| ISSN: | 1996-1073 |