Exploring GAA-Nanosheet, Forksheet and GAA–Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height

This study presents a Technology Computer Aided Design (TCAD) and comprehensive Design-Technology Co-Optimization (DTCO) approach to evaluate and enhance power and performance in Gate-All-Around Nanosheet (GAA-Nsh) and Forksheet (Fsh) architectures. The analysis focuses on the impact of active width...

Full description

Saved in:
Bibliographic Details
Main Authors: Gautam Gaddemane, Pieter Schuddinck, Krishna Bhuwalka, Gerhard Rzepa, Gioele Mirabelli, Anshul Gupta, Jurgen Bommels, Philippe Matagne, Dmitry Yakimets, Hao Wu, Lei Hou, Geert Hellings, Changze Liu
Format: Article
Language:English
Published: IEEE 2025-01-01
Series:IEEE Journal of the Electron Devices Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10753294/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839605451585486848
author Gautam Gaddemane
Pieter Schuddinck
Krishna Bhuwalka
Gerhard Rzepa
Gioele Mirabelli
Anshul Gupta
Jurgen Bommels
Philippe Matagne
Dmitry Yakimets
Hao Wu
Lei Hou
Geert Hellings
Changze Liu
author_facet Gautam Gaddemane
Pieter Schuddinck
Krishna Bhuwalka
Gerhard Rzepa
Gioele Mirabelli
Anshul Gupta
Jurgen Bommels
Philippe Matagne
Dmitry Yakimets
Hao Wu
Lei Hou
Geert Hellings
Changze Liu
author_sort Gautam Gaddemane
collection DOAJ
description This study presents a Technology Computer Aided Design (TCAD) and comprehensive Design-Technology Co-Optimization (DTCO) approach to evaluate and enhance power and performance in Gate-All-Around Nanosheet (GAA-Nsh) and Forksheet (Fsh) architectures. The analysis focuses on the impact of active widths, sheet count, wall properties, and power delivery methods on the effective resistance (Reff) and capacitance (Ceff) of these devices. The research employs simulations of five-stage INVD1 ring oscillators (RO) at various metal pitches (Mx) to extract frequency and power data. Notably, a novel Gate-All-Around Forksheet (GAA-Fsh) structure is introduced, offering enhanced gate control while retaining the advantages of Fsh. The study also explores asymmetric N/PFETs within the Fsh technology, and innovative contacting approaches such as Buried Power Rail (BPR) and Backside Power Rail (BS-PR) with Backside Contact (BSC) to reduce access resistance. Results indicate that GAA-Fsh outperforms traditional GAA-Nsh and Fsh due to reduced <inline-formula> <tex-math notation="LaTeX">${\mathrm { R}}_{\mathrm { eff}}$ </tex-math></inline-formula> and Ceff, although it is process feasible only at larger Mx. At smaller Mx, GAA-Nsh demonstrates higher performance than Fsh at a given sheet width (Wsh), but Fsh, with the advantage of additional Wsh, can match GAA-Nsh performance at larger Wsh. Furthermore, the BPR and BS-PR contacting schemes are found to provide similar performance. This research provides valuable insights into future semiconductor device designs, emphasizing higher performance and efficient scaling.
format Article
id doaj-art-f99b94e7aed54482b0aaf4d88f2cb724
institution Matheson Library
issn 2168-6734
language English
publishDate 2025-01-01
publisher IEEE
record_format Article
series IEEE Journal of the Electron Devices Society
spelling doaj-art-f99b94e7aed54482b0aaf4d88f2cb7242025-08-01T23:00:28ZengIEEEIEEE Journal of the Electron Devices Society2168-67342025-01-011376978210.1109/JEDS.2024.349809210753294Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell HeightGautam Gaddemane0https://orcid.org/0000-0003-0067-8674Pieter Schuddinck1Krishna Bhuwalka2Gerhard Rzepa3https://orcid.org/0000-0002-3711-1957Gioele Mirabelli4https://orcid.org/0000-0001-7060-4836Anshul Gupta5https://orcid.org/0000-0003-4276-5397Jurgen Bommels6https://orcid.org/0000-0002-8761-5213Philippe Matagne7https://orcid.org/0000-0003-0365-2066Dmitry Yakimets8Hao Wu9https://orcid.org/0009-0005-3048-9075Lei Hou10Geert Hellings11https://orcid.org/0000-0002-5376-2119Changze Liu12https://orcid.org/0009-0009-9568-2019imec, Leuven, Belgiumimec, Leuven, BelgiumHuawei Technologies Research and Development, Leuven, BelgiumGlobal TCAD Solutions, Wien, Austriaimec, Leuven, Belgiumimec, Leuven, Belgiumimec, Leuven, Belgiumimec, Leuven, BelgiumHuawei Technologies Research and Development, Leuven, BelgiumHuawei Technologies Research and Development, Leuven, BelgiumHuawei Technologies Research and Development, Leuven, Belgiumimec, Leuven, BelgiumHuawei Technologies Research and Development, Leuven, BelgiumThis study presents a Technology Computer Aided Design (TCAD) and comprehensive Design-Technology Co-Optimization (DTCO) approach to evaluate and enhance power and performance in Gate-All-Around Nanosheet (GAA-Nsh) and Forksheet (Fsh) architectures. The analysis focuses on the impact of active widths, sheet count, wall properties, and power delivery methods on the effective resistance (Reff) and capacitance (Ceff) of these devices. The research employs simulations of five-stage INVD1 ring oscillators (RO) at various metal pitches (Mx) to extract frequency and power data. Notably, a novel Gate-All-Around Forksheet (GAA-Fsh) structure is introduced, offering enhanced gate control while retaining the advantages of Fsh. The study also explores asymmetric N/PFETs within the Fsh technology, and innovative contacting approaches such as Buried Power Rail (BPR) and Backside Power Rail (BS-PR) with Backside Contact (BSC) to reduce access resistance. Results indicate that GAA-Fsh outperforms traditional GAA-Nsh and Fsh due to reduced <inline-formula> <tex-math notation="LaTeX">${\mathrm { R}}_{\mathrm { eff}}$ </tex-math></inline-formula> and Ceff, although it is process feasible only at larger Mx. At smaller Mx, GAA-Nsh demonstrates higher performance than Fsh at a given sheet width (Wsh), but Fsh, with the advantage of additional Wsh, can match GAA-Nsh performance at larger Wsh. Furthermore, the BPR and BS-PR contacting schemes are found to provide similar performance. This research provides valuable insights into future semiconductor device designs, emphasizing higher performance and efficient scaling.https://ieeexplore.ieee.org/document/10753294/DTCOnanosheetForksheetburied power railbackside power deliveryPPA
spellingShingle Gautam Gaddemane
Pieter Schuddinck
Krishna Bhuwalka
Gerhard Rzepa
Gioele Mirabelli
Anshul Gupta
Jurgen Bommels
Philippe Matagne
Dmitry Yakimets
Hao Wu
Lei Hou
Geert Hellings
Changze Liu
Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
IEEE Journal of the Electron Devices Society
DTCO
nanosheet
Forksheet
buried power rail
backside power delivery
PPA
title Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
title_full Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
title_fullStr Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
title_full_unstemmed Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
title_short Exploring GAA-Nanosheet, Forksheet and GAA&#x2013;Forksheet Architectures: A TCAD-DTCO Study at 90 nm and 120-nm Cell Height
title_sort exploring gaa nanosheet forksheet and gaa x2013 forksheet architectures a tcad dtco study at 90 nm and 120 nm cell height
topic DTCO
nanosheet
Forksheet
buried power rail
backside power delivery
PPA
url https://ieeexplore.ieee.org/document/10753294/
work_keys_str_mv AT gautamgaddemane exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT pieterschuddinck exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT krishnabhuwalka exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT gerhardrzepa exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT gioelemirabelli exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT anshulgupta exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT jurgenbommels exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT philippematagne exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT dmitryyakimets exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT haowu exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT leihou exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT geerthellings exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight
AT changzeliu exploringgaananosheetforksheetandgaax2013forksheetarchitecturesatcaddtcostudyat90nmand120nmcellheight