Improved Dynamic Correction for Seismic Data Processing: Mitigating the Stretch Effect in NMO Correction
Seismic data processing is essential in hydrocarbon exploration, with normal moveout (NMO) correction being a pivotal step in enhancing seismic signal quality. However, conventional NMO correction often suffers from the stretch effect, which distorts seismic reflections and degrades data quality, es...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Geosciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3263/15/7/258 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seismic data processing is essential in hydrocarbon exploration, with normal moveout (NMO) correction being a pivotal step in enhancing seismic signal quality. However, conventional NMO correction often suffers from the stretch effect, which distorts seismic reflections and degrades data quality, especially in long-offset data. This study addresses the issue by analyzing synthetic models and proposing a nonhyperbolic stretch-free NMO correction technique. The proposed method significantly improves seismic data quality by preserving up to 90% of the original amplitude, maintaining frequency content stability at 30 Hz, and achieving a high reduction of stretch-related distortions. Compared to conventional NMO, our technique results in clearer seismic gathers, enhanced temporal resolution, and more accurate velocity models. These improvements have substantial implications for high-resolution subsurface imaging and precise reservoir characterization.This work offers a robust and computationally efficient solution to a longstanding limitation in seismic processing, advancing the reliability of exploration in geologically complex environments. |
---|---|
ISSN: | 2076-3263 |