A Data-Driven Iterative Feedforward Tuning Strategy with a Variable-Gain Feedback Controller for Linear Servo Systems
Iterative feedforward tuning (IFFT) compensates for the dynamic tracking error in linear servo systems caused by reference trajectory and nonlinear friction. The feedback controller with infinite DC gain makes the steady-state tracking error zero. This paper analyzes the effect of the DC gain of the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-06-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/13/3284 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Iterative feedforward tuning (IFFT) compensates for the dynamic tracking error in linear servo systems caused by reference trajectory and nonlinear friction. The feedback controller with infinite DC gain makes the steady-state tracking error zero. This paper analyzes the effect of the DC gain of the feedback controller on IFFT and proposes an IFFT strategy with a variable-gain feedback controller. This strategy makes the dynamic tracking error due to Coulomb friction behave as a continuous and easy-to-construct window function, which makes the feedforward basis function vector consistent with the dimensionality of the dynamic tracking error. This strategy improves both the efficiency and accuracy of IFFT compared to IFFT using a fixed-gain feedback controller. The dynamic tracking error is compensated to the maximum extent possible, and the steady-state tracking error is zero. Theoretical verification and experimental results indicate the excellent iterative efficiency and accuracy of IFFT with a variable-gain feedback controller. |
---|---|
ISSN: | 1996-1073 |