Fubini–Study forms on punctured Riemann surfaces

In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the induced Fubini–Study forms by Kodaira maps of high tensor powers of the...

Full description

Saved in:
Bibliographic Details
Main Authors: Apredoaei, Razvan, Ma, Xiaonan, Wang, Lei
Format: Article
Language:English
Published: Académie des sciences 2025-06-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.763/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839606794392961024
author Apredoaei, Razvan
Ma, Xiaonan
Wang, Lei
author_facet Apredoaei, Razvan
Ma, Xiaonan
Wang, Lei
author_sort Apredoaei, Razvan
collection DOAJ
description In this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the induced Fubini–Study forms by Kodaira maps of high tensor powers of the line bundle and the Poincaré form near the singularity grows polynomially uniformly on a neighborhood of the singularity as the tensor power tends to infinity, as an application of the method in [5].
format Article
id doaj-art-f43b8ed7f8f34e04849eb9e42ca40da2
institution Matheson Library
issn 1778-3569
language English
publishDate 2025-06-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj-art-f43b8ed7f8f34e04849eb9e42ca40da22025-08-01T07:26:12ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692025-06-01363G660361510.5802/crmath.76310.5802/crmath.763Fubini–Study forms on punctured Riemann surfacesApredoaei, Razvan0Ma, Xiaonan1Wang, Lei2Université Paris Cité, CNRS, IMJ-PRG, Bâtiment Sophie Germain, UFR de Mathématiques, Case 7012, 75205 Paris Cedex 13, FranceChern Institute of Mathematics and LPMC, Nankai University, Tianjin 300071, P. R. ChinaSchool of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. ChinaIn this paper we consider a punctured Riemann surface endowed with a Hermitian metric that equals the Poincaré metric near the punctures, and a holomorphic line bundle that polarizes the metric. We show that the quotient of the induced Fubini–Study forms by Kodaira maps of high tensor powers of the line bundle and the Poincaré form near the singularity grows polynomially uniformly on a neighborhood of the singularity as the tensor power tends to infinity, as an application of the method in [5].https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.763/
spellingShingle Apredoaei, Razvan
Ma, Xiaonan
Wang, Lei
Fubini–Study forms on punctured Riemann surfaces
Comptes Rendus. Mathématique
title Fubini–Study forms on punctured Riemann surfaces
title_full Fubini–Study forms on punctured Riemann surfaces
title_fullStr Fubini–Study forms on punctured Riemann surfaces
title_full_unstemmed Fubini–Study forms on punctured Riemann surfaces
title_short Fubini–Study forms on punctured Riemann surfaces
title_sort fubini study forms on punctured riemann surfaces
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.763/
work_keys_str_mv AT apredoaeirazvan fubinistudyformsonpuncturedriemannsurfaces
AT maxiaonan fubinistudyformsonpuncturedriemannsurfaces
AT wanglei fubinistudyformsonpuncturedriemannsurfaces