A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions

This study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”,...

Full description

Saved in:
Bibliographic Details
Main Authors: Pengfei Bai, Adeel Ahmad, Akhter Rasheed, Saqib Hussain, Huo Tang, Saima Noor
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2173
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1839631702509486080
author Pengfei Bai
Adeel Ahmad
Akhter Rasheed
Saqib Hussain
Huo Tang
Saima Noor
author_facet Pengfei Bai
Adeel Ahmad
Akhter Rasheed
Saqib Hussain
Huo Tang
Saima Noor
author_sort Pengfei Bai
collection DOAJ
description This study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems.
format Article
id doaj-art-f3a83d72f79e41f4981d56cfab60ffa0
institution Matheson Library
issn 2227-7390
language English
publishDate 2025-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-f3a83d72f79e41f4981d56cfab60ffa02025-07-11T14:40:39ZengMDPI AGMathematics2227-73902025-07-011313217310.3390/math13132173A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski FunctionsPengfei Bai0Adeel Ahmad1Akhter Rasheed2Saqib Hussain3Huo Tang4Saima Noor5School of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, ChinaDepartment of Mathematics and Statistics, Hazara University Mansehra, Dhodial 21120, PakistanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanSchool of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, ChinaDepartment of Mathematics and Statistics, College of science, King Faisal University, Hofuf 31982, Al Ahsa, Saudi ArabiaThis study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems.https://www.mdpi.com/2227-7390/13/13/2173analytic functions<i>q</i>-Calculusconvolutiondifferential Subordinationsecant hyperbolic function
spellingShingle Pengfei Bai
Adeel Ahmad
Akhter Rasheed
Saqib Hussain
Huo Tang
Saima Noor
A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
Mathematics
analytic functions
<i>q</i>-Calculus
convolution
differential Subordination
secant hyperbolic function
title A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
title_full A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
title_fullStr A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
title_full_unstemmed A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
title_short A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
title_sort study on i q i starlike functions connected with i q i extension of hyperbolic secant and janowski functions
topic analytic functions
<i>q</i>-Calculus
convolution
differential Subordination
secant hyperbolic function
url https://www.mdpi.com/2227-7390/13/13/2173
work_keys_str_mv AT pengfeibai astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT adeelahmad astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT akhterrasheed astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT saqibhussain astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT huotang astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT saimanoor astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT pengfeibai studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT adeelahmad studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT akhterrasheed studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT saqibhussain studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT huotang studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions
AT saimanoor studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions