A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions
This study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”,...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-07-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/13/13/2173 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1839631702509486080 |
---|---|
author | Pengfei Bai Adeel Ahmad Akhter Rasheed Saqib Hussain Huo Tang Saima Noor |
author_facet | Pengfei Bai Adeel Ahmad Akhter Rasheed Saqib Hussain Huo Tang Saima Noor |
author_sort | Pengfei Bai |
collection | DOAJ |
description | This study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems. |
format | Article |
id | doaj-art-f3a83d72f79e41f4981d56cfab60ffa0 |
institution | Matheson Library |
issn | 2227-7390 |
language | English |
publishDate | 2025-07-01 |
publisher | MDPI AG |
record_format | Article |
series | Mathematics |
spelling | doaj-art-f3a83d72f79e41f4981d56cfab60ffa02025-07-11T14:40:39ZengMDPI AGMathematics2227-73902025-07-011313217310.3390/math13132173A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski FunctionsPengfei Bai0Adeel Ahmad1Akhter Rasheed2Saqib Hussain3Huo Tang4Saima Noor5School of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, ChinaDepartment of Mathematics and Statistics, Hazara University Mansehra, Dhodial 21120, PakistanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanDepartment of Mathematics, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, PakistanSchool of Mathematics and Computer Sciences, Chifeng University, Chifeng 024000, ChinaDepartment of Mathematics and Statistics, College of science, King Faisal University, Hofuf 31982, Al Ahsa, Saudi ArabiaThis study introduces a novel subclass of <i>q</i>-starlike functions that is defined by the application of the <i>q</i>-difference operator and <i>q</i>-analogue of hyperbolic secant function. By making certain variations to the parameter “<i>q</i>”, the geometric interpretation of the domain hyperbolic secant function has also been discussed. The primary objective is to investigate and establish key results on the differential subordination of various orders within this newly defined class. Furthermore, convolution properties are explored and coefficient bounds are derived for these functions. A deeper analysis of these coefficients bounds unveils intriguing geometric insights and significant mathematical problems.https://www.mdpi.com/2227-7390/13/13/2173analytic functions<i>q</i>-Calculusconvolutiondifferential Subordinationsecant hyperbolic function |
spellingShingle | Pengfei Bai Adeel Ahmad Akhter Rasheed Saqib Hussain Huo Tang Saima Noor A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions Mathematics analytic functions <i>q</i>-Calculus convolution differential Subordination secant hyperbolic function |
title | A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions |
title_full | A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions |
title_fullStr | A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions |
title_full_unstemmed | A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions |
title_short | A Study on <i>q</i>-Starlike Functions Connected with <i>q</i>-Extension of Hyperbolic Secant and Janowski Functions |
title_sort | study on i q i starlike functions connected with i q i extension of hyperbolic secant and janowski functions |
topic | analytic functions <i>q</i>-Calculus convolution differential Subordination secant hyperbolic function |
url | https://www.mdpi.com/2227-7390/13/13/2173 |
work_keys_str_mv | AT pengfeibai astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT adeelahmad astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT akhterrasheed astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT saqibhussain astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT huotang astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT saimanoor astudyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT pengfeibai studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT adeelahmad studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT akhterrasheed studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT saqibhussain studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT huotang studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions AT saimanoor studyoniqistarlikefunctionsconnectedwithiqiextensionofhyperbolicsecantandjanowskifunctions |