Towards Extracellular Vesicles in the Treatment of Epidermolysis Bullosa

Epidermolysis bullosa (EB) is a debilitating genetic skin disorder characterized by extreme fragility, chronic wounds, and severe complications, particularly in its most severe form, recessive dystrophic EB (RDEB). Current treatments focus on symptomatic relief through wound care and pain management...

Full description

Saved in:
Bibliographic Details
Main Authors: Aaron Gabriel W. Sandoval, Evangelos V. Badiavas
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Bioengineering
Subjects:
Online Access:https://www.mdpi.com/2306-5354/12/6/574
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Epidermolysis bullosa (EB) is a debilitating genetic skin disorder characterized by extreme fragility, chronic wounds, and severe complications, particularly in its most severe form, recessive dystrophic EB (RDEB). Current treatments focus on symptomatic relief through wound care and pain management, with recent FDA approvals of Vyjuvek and Filsuvez providing new but limited therapeutic options. However, emerging research highlights the potential of extracellular vesicles (EVs) derived from mesenchymal stem cells as a promising approach to address both the symptoms and underlying pathology of EB. EVs function as carriers of bioactive molecules, modulating inflammation, promoting tissue regeneration, and even delivering functional type VII collagen to RDEB patient cells. Unlike whole-cell therapies, EVs are non-immunogenic, have greater stability, and avoid risks such as graft-versus-host disease or tumorigenic transformation. Additionally, EVs offer diverse administration routes, including topical application, local injection, and intravenous delivery, which could extend their therapeutic reach beyond skin lesions to systemic manifestations of EB. However, challenges remain, including standardization of EV production, scalability, and ensuring consistent therapeutic potency. Despite these hurdles, EV-based therapies represent a transformative step toward addressing the complex pathology of EB, with the potential to improve wound healing, reduce fibrosis, and enhance patient quality of life.
ISSN:2306-5354