Growth estimates for a Dirichlet series and its derivative

Let $A\in(-\infty,+\infty]$, $\Phi$ be a continuous function on $[a,A)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma)\colon \sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline...

Full description

Saved in:
Bibliographic Details
Main Authors: S.I. Fedynyak, P.V. Filevych
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2020-03-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/2
Tags: Add Tag
No Tags, Be the first to tag this record!