Growth estimates for a Dirichlet series and its derivative
Let $A\in(-\infty,+\infty]$, $\Phi$ be a continuous function on $[a,A)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma)\colon \sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | German |
Published: |
Ivan Franko National University of Lviv
2020-03-01
|
Series: | Математичні Студії |
Subjects: | |
Online Access: | http://matstud.org.ua/ojs/index.php/matstud/article/view/2 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!