Growth estimates for a Dirichlet series and its derivative

Let $A\in(-\infty,+\infty]$, $\Phi$ be a continuous function on $[a,A)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma)\colon \sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline...

Full description

Saved in:
Bibliographic Details
Main Authors: S.I. Fedynyak, P.V. Filevych
Format: Article
Language:German
Published: Ivan Franko National University of Lviv 2020-03-01
Series:Математичні Студії
Subjects:
Online Access:http://matstud.org.ua/ojs/index.php/matstud/article/view/2
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $A\in(-\infty,+\infty]$, $\Phi$ be a continuous function on $[a,A)$ such that for every $x\in\mathbb{R}$ we have $x\sigma-\Phi(\sigma)\to-\infty$ as $\sigma\uparrow A$, $\widetilde{\Phi}(x)=\max\{x\sigma -\Phi(\sigma)\colon \sigma\in [a,A)\}$ be the Young-conjugate function of $\Phi$, $\overline{\Phi}(x)=\widetilde{\Phi}(x)/x$ for all sufficiently large $x$, $(\lambda_n)$ be a nonnegative sequence increasing to $+\infty$, $F(s)=\sum a_ne^{s\lambda_n}$ be a Dirichlet series absolutely convergent in the half-plane $\operatorname{Re}s<A$, $M(\sigma,F)=\sup\{|F(s)|\colon \operatorname{Re}s=\sigma\}$ and $G(\sigma,F)=\sum |a_n|e^{\sigma\lambda_n}$ for each $\sigma<A$. It is proved that if $\ln G(\sigma,F)\le(1+o(1))\Phi(\sigma)$, $\sigma\uparrow A$, then the inequality $$ \varlimsup_{\sigma\uparrow A}\frac{M(\sigma,F')}{M(\sigma,F)\overline{\Phi}\,^{-1}(\sigma)}\le1 $$ holds, and this inequality is sharp. % Abstract (in English)
ISSN:1027-4634
2411-0620